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Individual perception dynamics in drunk games
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We study the effects of individual perceptions of payoffs in two-player games. In particular we consider the
setting in which individuals’ perceptions of the game are influenced by their previous experiences and outcomes.
Accordingly, we introduce a framework based on evolutionary games where individuals have the capacity to
perceive their interactions in different ways. Starting from the narrative of social behaviors in a pub as an
illustration, we first study the combination of the Prisoner’s Dilemma and Harmony Game as two alternative
perceptions of the same situation. Considering a selection of game pairs, our results show that the interplay
between perception dynamics and game payoffs gives rise to nonlinear phenomena unexpected in each of the
games separately, such as catastrophic phase transitions in the cooperation basin of attraction, Hopf bifurcations
and cycles of cooperation and defection. Combining analytical techniques with multiagent simulations, we also
show how introducing individual perceptions can cause nontrivial dynamical behaviors to emerge, which cannot
be obtained by analyzing the system at a macroscopic level. Specifically, initial perception heterogeneities at the
microscopic level can yield a polarization effect that is unpredictable at the macroscopic level. This framework
opens the door to the exploration of new ways of understanding the link between the emergence of cooperation
and individual preferences and perceptions, with potential applications beyond social interactions.
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I. INTRODUCTION

Game theory provides a useful mathematical formalism to
investigate the logical decision-making processes of intelli-
gent, rational individuals that maximize their expected payoff
in conflicting interest situations [1,2]. In simple noncooper-
ative games, cooperators can be vulnerable to exploitation
by selfish partners and so the dominant rational behavior is
expected to be uncooperative [3,4], as originally conjectured
by Darwin [5]. However, cooperative behavior is observed at
practically every level of biological and societal organization
[6], playing a key role in the major steps of evolution [7].
Controlled laboratory and field experiments have also mea-
sured non-negligible amounts of cooperative behavior among
humans [8–13]. Accordingly, many mechanisms have been
proposed to explain the emergence of cooperation in both
animal and human societies [14,15]. In this work we consider
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the effect of heterogeneous individual perceptions in games
on the evolution of cooperation.

It has been argued that individuals do not necessarily play
rationally but instead rational behaviors may emerge through
forms of adaptation. Thus far, two distinct mechanisms for
adaptive systems have been proposed: learning and evolution
[16–18]. Learning focuses on the local optimization of indi-
vidual strategies, whereas evolution considers the adaptation
of whole populations of individuals. In learning systems,
individuals “learn” their strategies over repeated games by
choosing actions to directly maximize their expected payoff
[16]. The study and development of optimal learning strate-
gies has become a subject of interest within the field of
machine learning, particularly when the payoffs are stochastic
or unknown [17]. In evolutionary game theory (EGT) players
have fixed strategies, but asexually reproduce offspring with
strategies proportional to their utility [18]. In social and
economic settings, where individuals do not reproduce, this
mechanism can be interpreted as a form of social learning in
which individuals imitate those with higher utilities. EGT has
been proven to be a powerful tool to study the emergence of
cooperation in a broad range of problems in which dilemmas
are present [19–22].

Common to many of these theoretical adaptive systems is
an inherent assumption of homogeneity that all individuals
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value the payoffs of specific outcomes in an identical manner.
In other words, game payoffs only depend on the set of actions
played, are invariant between individuals, and remain constant
over time. However, there is evidence that suggests individ-
uals perceive equivalent outcome scenarios differently. For
instance, experiments on populations from different cultures
indicate that individuals appear to assign different values to
the prescribed payoffs through an implicit “mapping” of the
game to social exchanges that are more familiar to them
[23,24]. These different game perspectives and behavioral
phenotypes do not only exist between geographically distant
cultures but also within local populations, as empirically
shown in Refs. [25–29].

Within this work we postulate that individuals may have
different perceptions of the same set of outcomes and that
these perceptions are shaped by their previous experience of
the game. For example, there has been a long-standing view
that trust can promote cooperation between organizations
and/or individuals [30,31] and trust can be built or broken
based on prior interactions. There may be a number of mecha-
nisms that change perceptions such as diminishing returns for
repeated actions, e.g., the benefit of scoring points in sports
can change depending on whether a team is currently leading
or not [32]. Perceived benefits of competing technologies can
vary between individuals and may change over time as a
function of those investing in the technology [33]. We present
a framework to model these types of systems by allowing
individuals to have different perceptions. Perceptions are
modeled as different sets of payoffs and the set of payoffs
perceived by an individual is determined by their state, which
is dynamically influenced by past experience.

Mixed games, in which individuals in the population play
one of two possible games, have previously been considered
[34,35]. However, these games transpire to produce the same
average behavior as the weighted mean of the two games.
Mixed games are different in structured populations [34],
where the average game is returned only if heterogeneity in
payoffs is small. Dynamic payoffs have also been considered
within dynamical games, in which payoffs are coupled with
the evolution of time [36–38] or games in which payoffs are
coupled with population strategies [39,40]. However, within
all these scenarios, individuals perceive rewards independent
of their own specific experiences.

A number of mechanisms have been shown to facilitate
cooperation in evolutionary settings, but many of these ne-
cessitate an infeasible level of complexity or cognitive load,
such as high memory capacity [41] or recognition of the
others [42], to occur in natural scenarios [43–46]. Memory
is conventionally considered as the history of coupled actions
against a given individual, or a set of them. Individual states,
however, provide a compressed version of memory that allows
reduction of the decision making process to a first-order
Markov one, i.e., future decisions are independent of the past
given the current state of the population. Frameworks incor-
porating states of individual players have been used to reduce
the complexity of such mechanisms [47]. Player states in
these models are typically used to directly modify the actions
individuals choose. In contrast, our proposed framework uses
states to modify the way each individual perceives the game

and uses simple strategies that do not have direct dependence
on the current state.

Here we introduce drunk game theory (DGT), a framework
that couples games to allow individuals to change their per-
ception (i.e., the game they play) according to their own prior
experience (i.e., the outcomes of their previous games). We
first exemplify DGT with a particular scenario called the Pub
Dilemma that couples a Prisoner’s Dilemma and a Harmony
Game.

In the following, we briefly review some key notions
from the study of two-player two-strategy symmetric games
(Sec. II). We then introduce the Pub Dilemma and provide
a generalization for any other pair of games (Sec. III). We
demonstrate analytically the emergence of new fixed points
and critical phase transitions and show that stable fixed points
in the original games can lose their stability in the resulting
coupled game (Sec. IV). Subsequently, we confirm analytical
results in agent-based simulations and extend them to the
study of individual behavior (Sec. V). Finally, we discuss the
wide range of potential multidisciplinary applications of DGT
(Sec. VI).

II. TWO-PLAYER TWO-STRATEGY SYMMETRIC GAMES

In the simplest version of two-player two-strategy sym-
metric games [48] individuals have a choice of two actions:
cooperate (C) or defect (D). Depending on their combined
actions they each receive a payoff. Since the payoffs are
symmetric, we can write the full set of possible payoffs as a
single payoff matrix using the convention that entries indicate
the payoff received by the player whose actions occupy the
rows:

G :=
C D

C R S
D T P

(1)

In this standard notation: Both players receive the reward R
if they both cooperate; both get the punishment P if they
both defect; and a defector receives the temptation T when
playing against a cooperator, who gets the sucker’s payoff S.
The relative payoff values R, S, T, P ∈ R determine the nature
of the game. We can standardize the payoffs by setting R = 1
and P = 0 and parametrize games by the T and S payoffs.

Figure 1 shows how we can classify games into four
characteristic types according to where they lie on in the
standard T -S parameter space [49]. Within such games, there
may exist one or more Nash equilibria (NE) [1]—steady states
in which no player can benefit by changing strategies while
the other player keeps theirs unchanged [48]. The Prisoner’s
Dilemma (PD) game corresponds to the lower right quadrant
where T >R>P>S. In this game defection is the rational
choice such that mutual defection (D, D) is the unique NE.
In the upper right quadrant we have the Snow Drift (SD) game
in which T >R>S >P. Players have an incentive to play D
but mutual defection is harmful for both parties. In the Stag
Hunt (SH) game (lower left quadrant), the payoff ordering
is R>T >P>S, which makes mutual cooperation (C,C) a
NE in which both players earn the most. The SH game also
contains a second NE when both players defect (D, D), but
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FIG. 1. T-S space. The four classes of two-player two-strategy
symmetric games within the standard T -S parameter space (R =
1, P = 0). Prisoner’s Dilemma (PD), Snow Drift (SD), Stag-Hunt
(SH), and Harmony Game (HG). Colors show the level of cooper-
ation obtained by the replicator dynamics at the stable equilibrium
starting from an initial fraction of cooperators x0 = 0.5.

results in a less favorable outcome. Finally, in the upper left
quadrant is the Harmony Game (HG), defined for T < R and
S > P, which has a single NE and payoff-dominant outcome
of (C,C). For more details we refer the reader to Ref. [48].

Nash equilibria represent the expected behavior of rational
players. However, rather than focus on rational individuals,
we instead consider a population of individuals that learn so-
cially through processes of imitation [50]. Individuals interact
with each other and can stochastically imitate their partner’s
strategy with a probability proportional to the difference of
their payoffs. Specifically, at time t , player i with strategy
s(t )

i will imitate player j’s strategy with a probability that is
a function of the difference in payoffs π

(t )
j − π

(t )
i , where π

(t )
i

represents i’s total payoff (summed over all games) at time t .
If we assume an infinite and well-mixed population, then the
evolution of strategies can be modeled at the population level
according to the proportion of cooperators x. This yields the
replicator equation:

ẋ = x(1 − x)(�C − �D), (2)

where �C and �D represent the expected payoff of a coop-
erator and a defector, respectively, when a fraction x of the
population are cooperators. The fixed points of the replicator
equation, i.e., the solutions of ẋ = 0, represent the equilibria
of the game dynamics.

III. INDIVIDUAL PERCEPTIONS IN GAMES

All individuals in standard two-player two-strategy sym-
metric games play the same game and receive the same set
of payoffs given a particular set of actions played. Here we
introduce the notion of drunk games where players may indi-
vidually perceive different payoffs for the same set of actions.
We model the simplest setting of two possible perceptions by
coupling two different games G1 and G2, each representing a

state of perception. In the following, we describe an example
of such a game, which we call the Pub Dilemma.

A. The Pub Dilemma

In the Pub Dilemma, two individuals approach the bar of
a busy pub. To receive their drinks efficiently, they decide to
combine their orders but do not discuss who will make the
order and settle the bill. Both individuals attract the attention
of different bar tenders simultaneously and therefore have two
available actions: cooperate C, by offering to buy a round (buy
two beers, one for each), or defect D, by doing nothing and
hoping that the other will make the order. The payoffs are
calculated as a function of the total beer bT and amount of
free beer bF received. Note that for convenience we set bT to
half the number of beers received to keep within the standard
setting where R = 1 and P = 0:

bT :=
C D

C 1 1
2

D 1
2 0

bF :=
C D

C 0 −1
D 1 0 (3)

At each round, each player perceives the interaction from
either a sober state, with payoffs G1 = bT + bF , or an intoxi-
cated state, with payoffs G2 = bT ,

G1 :=
C D

C 1 − 1
2

D 3
2 0

G2 :=
C D

C 1 1
2

D 1
2 0

(4)

The sober perception of payoffs includes the cost of the beer
and results in a PD scenario. The intoxicated individual, on
the other hand, is no longer concerned with the cost and
so perceives a payoff proportional to the number of beers
received bT , resulting in a HG scenario.

The change in perceptions between the two games is
governed by an individual state variable αi, which we interpret
as the probability for player i to perceive the G2 (intoxicated)
game. After playing a round, each player updates its internal
state α along with its strategy according to an imitation-
based update rule. Within the Pub Dilemma, we define the
α-update function such that it constantly decreases over time,
simulating the individual recovering to the sober state but
increases as a function of beer consumed during a round. In
this way, αi dynamically couples the two games such that it
captures player i’s previous experience. We assume that the
change in αi is a function of both interacting players’ actions,

α̇i = καi(1 − αi )(bT − μ), (5)

where the total beers bT is given in Eq. (3). Parameters κ and
μ control how sensitive players’ perceptions are to their prior
experiences and the relative rate of decay back to the sober
state, respectively.

In the same way as standard evolutionary games, play-
ers update their strategy after each round according to an
imitation-based rule. However, what is different to standard
EGT is that the two players i and j may be in different states
at time t . As such, the total payoff, π

(t )
i , perceived by player i

at a given time t is not necessarily the same as the payoff that
player j would obtain in the same situation. In other words,
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HG

PD
x

FIG. 2. The Pub Dilemma. Coupling of the Prisoner’s Dilemma
(G1: SPD = −0.5, TPD = 1.5) and the Harmony Game (G2: SHG =
0.5, THG = 0.5) using κ = 1, μ = 0.5. The field diagram illustrates
how the proportion of cooperators x and the average value of α in the
population evolves and contains a number of fixed points indicated
by circle markers, which are either stable (black), unstable (white), or
saddle points (gray). When α ∈ {0, 1} we recover the game dynamics
and fixed points of the original games (HG, top; PD, bottom).

when player i updates their strategy they compare the π
(t )
i

and π
(t )
j that are the payoffs as perceived by players i and j

respectively.
Figure 2 illustrates the game dynamics for a population

playing the Pub Dilemma for κ = 1 and μ = 0.5 with respect
to the proportion of cooperators x [Eq. (2)] and the average
value of α [Eq. (5)]. One can see that when α = 0 we recover
the game dynamics of the PD game, which has a stable
equilibrium at full defection. For α = 1 we obtain the HG
dynamics, which has a stable equilibrium at full cooperation.
The parameters of the two coupled games are symmetric with
respect to the center of Fig. 1. Consequently, the two basins of
attractions have the same size, i.e., half area of the unitary
(x, α) space. In addition to the fixed points of the PD and
HG games, the Pub Dilemma introduces a saddle point at
x = α = 0.5. This interior point is unstable and it can only
be reached following the trajectories of the orange arrows
that delimit the basins of attraction for full defection and full
cooperation.

B. Drunk games

The Pub Dilemma describes a particular coupling of
games; however, the same idea can be applied more generally
to couple any pair of games using the state variable α. We
describe this general formalism as a drunk game using the

notation G1 ⊕α G2. At the population level, we can represent
the system dynamics as:

α̇ = f (x, α), (6)

ẋ = x(1 − x)(�C − �D), (7)

in which we denote the population mean state as α and its
evolution as a function of its current value [Eq. (6)] and the
current proportion of cooperators in the population x [Eq. (7)].
The state variable α is updated according to a function
f (x, α). This framework does not place any requirement on
the functional form that f (x, α) takes, as long as it satisfies the
constraint α ∈ [0, 1]. The proportion of cooperators x evolves
according to the relative difference in expected payoff for the
two strategies �C and �D. However, the expected payoffs
are dependent on α and they can be calculated as a convex
combination of the two perceptions:

�C = α[xR1 + (1 − x)S2] + (1 − α)[xR2 + (1 − x)S1]

�D = α[xT2 + (1 − x)P1] + (1 − α)[xT1 + (1 − x)P2], (8)

where {Rg, Sg, Tg, Pg} are payoffs related to the game Gg, g ∈
{1, 2}. Unless otherwise stated, we set Rg = 1 and Pg = 0.
Setting α = 0 or α = 1 reduces the game to the standard
games G1 or G2, respectively. When f (x, α) = 0 we recover
the mixed games considered in previous studies in which a
fixed proportion α of the population plays one game while the
rest of the population plays another [34].

IV. DYNAMICS OF DRUNK GAMES

We analyze the dynamics of drunk games in terms of the
fixed points that represent the equilibria of the system and
their basins of attraction. The set of fixed points of a drunk
game G1 ⊕α G2 includes the fixed points of both G1 and G2

(at α = 0 and α = 1, respectively). However, the stability of
these fixed points may change. In addition, new fixed points
may also emerge depending on the pair of games and the
choice of the α-update function [Eq. (6)]. In the following
we show numerical and analytical evidence for phenomena
regarding the fixed points in drunk games. These include a
loss of stability in the stable fixed points in the original games,
formation of new fixed points or spirals, and changes in the
basins of attraction of fixed points.

Herein, we consider a variety of drunk games in which
pairs of payoff matrices are coupled by an α-update function
that can be factorized as

α̇ = f (x, α) = κ α(1 − α) q(x), (9)

where κ is a positive constant and q(x) a general function
that only depends on x. This function satisfies the boundary
conditions of α ∈ [0, 1].

A. Stability of original fixed points

The fixed points {(x̃, α̃)} of drunk games that were present
in the original games G1 and G2 are only stable if either

(i) α̃ = 0, x̃ is stable in G1, and q(x̃) < 0 or
(ii) α̃ = 1, x̃ is stable in G2, and q(x̃) > 0.
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(a) (b) (c)

FIG. 3. The Drunk Prisoner. Coupling of a Harmony Game (G1) and a Prisoner’s Dilemma (G2) displays a Hopf bifurcation regulated
by the payoffs SHG and THG (SPD = −1, TPD = 2, κ = 1, μ = 0.5 for each panel). Two trajectories (red and blue curves) for arbitrary initial
conditions are shown in each example. (a) SHG = THG < 0.5, the Drunk Prisoner contains no stable fixed points and displays an unstable spiral
originating at x = μ = 0.5. All spirals converge to a trajectory that follows the boundaries of the (x, α) plane such that 0 < α < 1. (b) The
onset of the Hopf bifurcation occurs at SHG = THG = 0.5 and we observe the same unstable fixed point at x = μ = 0.5 surrounded by an
infinite set of closed cyclic trajectories. (c) SHG = THG > 0.5, the cycles collide over the fixed point at x = μ = 0.5 which becomes stable. In
this setting a spirals appear such that any initialization of the system, except those on the boundaries, converge to the same interior fixed point
where half of the population are cooperators and the other half defectors.

When q(x) = (x − μ), noting that the expected value of
bT is equal to the proportion of cooperators x, we recover the
system-level α-update function equivalent to Eq. (5). The Pub
Dilemma (PD ⊕α HG) includes both the stable fixed point of
the Prisoner’s Dilemma (0,0) and the stable fixed point of the
Harmony Game (1,1) when 0 < μ < 1, as we see Fig. 2.

Reversing the order of the games in the Pub Dilemma
forms another drunk game that we call the Drunk Prisoner
(HG ⊕α PD). Figure 3 illustrates the dynamics of the Drunk
Prisoner and shows that neither of the fixed points from HG
or PD are stable any more.

B. New fixed points and spirals

The coupling of standard two-player games can produce
additional fixed points inside the boundary of the (x, α) plane,
i.e., interior fixed points {(x̃•, α̃•)} such that 0 < x̃• < 1 and
0 < α̃• < 1. To analyze these interior fixed points, we first
rewrite the cooperation dynamics in Eq. (7) by substituting
�C,�D for the expressions in Eq. (8):

ẋ = −x(1 − x)[(1 − α) h1(x) + α h2(x)], (10)

where hg(x) = (1 − x)Fg + xGg represents the incentive to
defect in game g given the current proportion of cooperators x,
i.e., the fear of cooperating Fg = Pg − Sg when your opponent
defects and the greed Gg = Tg − Rg from the possibility of
exploiting your opponent’s cooperation [51]. In order for one
of these interior points (x̃•, α̃•) to be a fixed point, q(x̃•) and
ẋ must be equal to zero. Then from Eq. (10) we obtain:

α̃• = h1(x̃•)

h1(x̃•) − h2(x̃•)
, (11)

which implies that h1(x̃•) and h2(x̃•) must have different signs
to ensure that 0 < α̃• < 1.

We can determine the stability of this interior fixed point
using the eigenvalues of the Jacobian of the system in Eq. (6)
and Eq. (7) evaluated at (x̃•, α̃•). The eigenvalues can be
written in the form of λ = u ± i

√
v such that

u = x̃•(1 − x̃•)α̃•

2

F2G1 − F1G2

h1(x̃•)
(12)

and

v = κ x̃•(1 − x̃•) α̃•h2(x̃•)q′(x̃•) − u2, (13)

where q′(x̃•) is the derivative of q(x) with respect to x
evaluated at x̃•. When v < 0 the eigenvalues are real [i.e.,
when h2(x̃•)q′(x̃•) < 0]. We know that a pair of negative
real eigenvalues indicate that a fixed point is stable [52,53].
Therefore, when the eigenvalues are real, the interior fixed
point is stable if and only if u < 0 and the first term in the right
hand of Eq. (13) is positive, i.e., h2(x̃•)q′(x̃•) > 0. However,
if v > 0, then the eigenvalues are complex conjugates of
each other. In this case the dynamics form spirals around the
interior resting point, which is either an attractor when u < 0
or a repeller when u > 0. In the special case when u = 0, these
orbits become limit cycles. In summary:

(1) An interior fixed point (x̃•, α̃•) exists if 0 < x̃• <

1, q(x̃•) = 0 and h1(x̃•)h2(x̃•) < 0.
(2) Spirals are formed if v > 0. The spirals are attrac-

tive when u < 0 and repellent when u > 0. Limit cycles are
formed for the special case u = 0.

(3) No spirals are formed if v < 0. Then the fixed point is
stable if λ < 0 and unstable otherwise.
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FIG. 4. Generalized Pub Dilemma. Attractiveness of the cooperation basin for the generalized Pub Dilemma: coupling the PD (G1: S1 =
−1, T1 = 2) with another game G2 having parameters T2 and S2. The (S2, T2) space indicates the probability of converging on the cooperative
fixed point (x = 1 and α = 1), i.e., the proportion of cooperation of the coupled games, when κ = 0.1 (a), κ = 1 (b), and κ = 10 (c). As κ

increases we can see an overall increase of the attractiveness of cooperation.

We can observe these dynamics in play in the Pub Dilemma
in Fig. 2 and in the Drunk Prisoner in Fig. 3. In the Pub
Dilemma (PD ⊕α HG) with q(x) = (x − μ) a fixed point
occurs at x = μ. Since hPD(x) > 0 and hHG(x) < 0 for any
value of x, λ is strictly non-negative and so the interior fixed
point of the Pub Dilemma is always unstable. However, in the
Drunk Prisoner (HG ⊕α PD) we observe a more diverse range
of game dynamics. Now v may be positive or negative and so
we can observe the full range of cases given in conditions (2)
(spirals are formed) and (3) (no spirals) above.

Figure 3 shows a set of examples of the Drunk Pris-
oner in which we vary the payoffs (SHG, THG) of the sober
state, while keeping the payoffs of the intoxicated state fixed
(SPD = −1, TPD = 2). For each of these games v > 0 and so
the game dynamics exhibits spirals around the interior fixed
point. When SHG = THG < μ [Fig. 3(a)], u is positive and
the interior fixed point is unstable. When SHG = THG > μ

[Fig. 3(c)], u is negative and the interior fixed point attracts all
trajectories initialized anywhere other than the four extremal
saddle points. In the case that SHG = THG = μ [Fig. 3(b)],
a Hopf bifurcation occurs creating an unstable fixed point
surrounded by closed cycles. In terms of the pub metaphor,
the population playing this particular Drunk Prisoner game
will, on average, experience an endless cycle of cooperating,
getting drunk, defecting, and sobering up.

More generally, when SHG �= THG, the Drunk Prisoner’s
interior fixed point is stable and attractive when the following
condition is satisfied:

FHG

GHG
>

FPD

GPD
. (14)

In other words, the interior fixed point becomes attractive
when the fear-greed ratio is higher in the HG than in the PD
game. By setting Rg = 1 and Pg = 0 we obtain:

SHG

1 − THG
>

SPD

1 − TPD
. (15)

C. Attractiveness of cooperation

In standard two-player two-strategy symmetric games we
can examine the attractiveness of fixed points by studying
the relative size of the set of initial conditions (proportion
of cooperators x) that eventually converge on a particular
fixed point. The attractiveness provides an estimate of the size
of the basin of attraction. In drunk games, these basins of
attraction are defined over the (x, α) plane rather than just on
the x ∈ [0, 1] line. The size and shape of the basins depend on
the α-update function as well as on G1 and G2 parameters.

We now examine how changes in the basins of attraction
occur in a generalized version of the Pub Dilemma in which
G1 is a Prisoner’s Dilemma (with S1 = −1 and T1 = 2) and
G2 is another game (S2 ∈ [−1, 1] and T2 ∈ [0, 2]). Assuming
q(x) = (x − 0.5), we estimate the basins of attraction for any
given set of game parameters using Monte Carlo simulations.
We calculate the attractiveness of cooperation by counting
the proportion of 103 independent simulations that converge
on full cooperation with initial conditions (x0, α0) ∈ [0, 1]2

sampled uniformly at random.
Figure 4 shows the proportion of simulations that converge

to a full cooperation fixed point for different settings of the
G2 payoffs {S2, T2} and for different values of κ . We see
that by increasing κ the overall attractiveness of cooper-
ation increases. The maximal attractiveness of cooperation
occurs when half of all initial conditions converge on full
cooperation. Also, note that coupled games in the bottom
right quadrant cannot converge on full cooperation as they
correspond to the set of drunk games in which both games are
versions of the PD, for which the evolutionary stable strategy
is full defection.

D. Abrupt transition in cooperation attractiveness

We formulate and extend our previous analysis to the
Drunken Battle of Coordination, a combination of Snow Drift
and Stag Hunt games (SD ⊕α SH). Recall that Nash equilibria
in both games require the coordination of both players, i.e.,
in SD games the NE occurs when players choose different
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κ = 0.1

κ = 1

κ = 10

(a)
(b)

(c)

x

SH

SD

(a) (b) (c)

x x

(d)(a) (b) (c) (d)

FIG. 5. The Drunken Battle of Coordination. Coupling of a Snow Drift (G1: TSD = 2, S1 = SSD) and the Stag Hunt (G2: TSH = 0.5, SSH =
−0.5). (a) SSD = 0.25 and κ = 1, all trajectories converge on either the stable fixed point of SD or the stable fixed point of SH at full
cooperation, with the exception of points initialized at a fixed point or on the orange arrow. (b) SSD = 0.5 and κ = 1, a first-order phase
transition occurs and a line of fixed points emerge at x = 0.5. (c) SSD = 0.75 and κ = 1, all trajectories converge on the full cooperation fixed
point at the top right. (d) Attractiveness of the cooperation basin for all possible S1 ∈ [0, 1]; cases (a)–(c) are marked with κ = 1. Increasing
κ increases the overall attractiveness of cooperation. A first-order phase transition occurs at S1 = 0.5 such that when S1 > 0.5 all initial
conditions lead to full cooperation.

strategies, while in SH games a NE requires players to play
the same strategy.

Figure 5 shows all dynamics in the Drunken Battle of
Coordination in which we fix three of the payoff parameters
(TSD = 2, SSH = −0.5, TSH = 0.5) as we vary the sucker’s
payoff in the SD game (S1 = SSD ∈ [0, 1]). We continue
using the same α-update function as before with q(x) =
(x − 0.5). Similar to the generalized Pub Dilemma, we see
in Fig. 5(d) that increasing κ has the effect of increasing the
attractiveness of cooperation. However, in contrast to the gen-
eralized Pub Dilemma, the Drunken Battle of Coordination
displays a critical transition in the attractiveness of coopera-
tion as we vary S1. Specifically, we see that a discontinuous
transition occurs at the critical value of S1 = 0.5 and for any
S1 above this value all initializations lead to full cooperation.
The other panels in Fig. 5 provide more detail, showing the
dynamics in the (x, α) plane for three settings: (a) SSD = 0.25,
(b) SSD = 0.5, and (c) SSD = 0.75; also labeled in Fig. 5(d).
We see in all three cases that the stable fixed point of the
SH that corresponds to complete defection becomes unstable,
while the full cooperation fixed point remains stable. The sta-
ble fixed point of the SD only remains stable when SSD � 0.5
[Fig. 5(a)]. At the critical point, when SSD = 0.5 [Fig. 5(b)],
a line of unstable interior fixed points appears. These fixed
points are stable with respect to x for values of α < 0.5. When
SSD > 0.5 [Fig. 5(c)], the stable fixed point of the SH game
moves to the right of x = 0.5 and becomes unstable. As a
consequence, all initializations, except those on a fixed point,
converge to the full cooperation fixed point in the top right
corner.

V. THE EFFECT OF HETEROGENEOUS PERCEPTIONS

So far we have made a mean-field approximation by as-
suming that the system of individuals can be represented
by the population averages. We now consider the dynamics
of the system when we introduce populations of individuals
with different perceptions, i.e., there is some variance in the

individual αi values. Modeling the evolution of individual
perceptions becomes analytically intractable and so we use
an agent-based model (ABM) to simulate the interactions of
a large population. We restrict our current investigation to
the simple setting in which individuals start with one of two
possible perceptions, α

(0)
i = {α1, α2} and α1 < α2, such that

individuals initialized with α1 have a greater initial propensity
to perceive G1. We define the heterogeneity of α as:

�α = α1 − α2

α1 + α2
, (16)

such that �α = 0 indicates that α is homogeneous and �α =
1 means that α1 = 0 and α2 = 1. In this binary setting the
mean behavior is no longer representative of any of the
individuals in the population.

At each round of the ABM simulation each of the N agents
play the drunk game with every other agent [N (N − 1)/2
games are played each round], accumulate payoffs according
to their actions and the game they perceive [G1 with probabil-
ity 1 − α

(t )
i and G2 otherwise]. After each round the strategies

{xi} and perceptions {αi} are updated synchronously such that
every agent’s strategy and perception is updated at time t + 1
according to the agent strategies and perceptions at time t .

To minimize confounding effects, we set up the ABM to
match the analytical setting as closely as possible. For in-
stance, to minimize finite-size effects, we use a relatively large
population of N = 104 agents. Agents have pure strategies,
either cooperate (C) or defect (D) that are initialized randomly
according to Pr[x(0)

i = C] = x(0). All agents update their αi

according to [cf. Eq. (5)]:

α
(t+1)
i = α

(t )
i + κα

(t )
i

[
1 − α

(t )
i

]
[x̄(t ) − μ], (17)

where x̄(t ) is the proportion of cooperators in the population
at time t . Agents update their strategy according to the local
replicator rule [54]. In the local replicator rule, each agent i
randomly chooses another agent j and imitates j’s strategy
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(a) (b)

FIG. 6. α-heterogeneity in the Drunk Prisoner game. The effect of initializing the Drunk Prisoner game with different payoffs, SHG = THG

(x axis) and levels of α-heterogeneity, �(0)
α (y axis). (a) Heatmap of the distance of the population average from the interior fixed point.

Increasing the initial α-heterogeneity increases the stability of the interior fixed point and the Hopf bifurcation occurs at lower payoffs SHG and
THG. (b) Heatmap of the change in α-heterogeneity, �(t )

α − �(0)
α , at time t = 104. Three distinct behaviors are observed according to whether

the strategies, x, and perceptions, α coalesce or polarize. The cyan markers indicate the individual trajectories shown in Fig. 7: circle (a), star
(b), and pentagon (c).

for the next round (t + 1) with probability p(t+1)
i j given by:

p(t+1)
i j = max

(
0, β

π j − πi

	

)
, (18)

where π
(t )
i is the average payoff agent i receives in round

t and 	 is the maximum possible difference in payoffs,
i.e., (N − 1)[max(1, T ) − min(0, S)]. The parameter β < 1
controls the intensity of selection and thus the update strategy
change rate in the system. We set β = κ = 0.1 to enact a
gradual change and to achieve greater numerical stability in
finite size populations.

For all the games presented so far, when �α = 0 we find
that the system behavior matches the results of the analytical
ones, all agents follow the same trajectory until they meet one
of the stable fixed points. In many of the games, introducing
heterogeneity (�α > 0) often has little effect on the final out-
come, but can increase the time scale for agents to converge on
a stable fixed point. A more substantial effect of heterogeneity
occurs in games that contain a stable interior fixed point. To
better show this phenomenon, we consider the Drunk Prisoner
game (HG ⊕α PD) for which we previously established that
an interior stable fixed point exists when SHG = THG > 0.5.
Figure 6(a) shows the distance of (x̄(t ), ᾱ(t ) ) from the interior
equilibrium averaged over the whole population at t = 104.
We see that when the initial α heterogeneity �(0)

α = 0, the
Hopf bifurcation occurs at SHG = THG = 0.5, which is in
agreement with our analytical results. However, increasing
�(0)

α , we find that the bifurcation occurs at lower values of SHG

and THG. Put differently, the stability of the interior fixed point
increases as the heterogeneity of perceptions increases, at least
when we consider the average over the whole population.

The mean of the population, however, is not representative
of any of the individual agents in the population [when �(0)

α >

0] due to the bimodal distribution over α. Figure 6(b) displays
a heat map of the change in α heterogeneity from the start

to the end of the simulation, i.e., �(t )
α − �(0)

α . Comparing
against Fig. 6(a), we see that when the interior fixed point is
unstable, the strategies and perceptions coalesce to become
homogeneous and converge on a trajectory that follows the
boundaries of the (x, α) plane. Figure 7(a) shows, for the
parameter setting indicated by a circle marker in Fig. 6, an
example of this type of trajectory. In this case there is little
difference between the individual and population dynamics.
When SHG = THG > 0.5 we observe that the distribution of α

coalesces to a single mode, but the strategies polarize such
that the agents initialized at α1 become cooperators, while
the rest become defectors. Figure 7(b) shows an example
for the settings indicated by a star marker in Fig. 6. In
this example we see that only a relatively small amount
of initial heterogeneity [�(0)

α = 0.04] is required to cause
this polarization of strategies. When SHG = THG < 0.5 and
the interior fixed point is, for the global system behavior,
stable, we find that the strategies also diverge. However,
in this regime the perceptions also polarize such that αi of
agents diverge according to their initial values and resulting in
α

(t )
1 → 0 and α

(t )
2 → 1. Finally, Fig. 7(c) shows an example

of this setting (pentagon marker in Fig. 6). In this case the
observations appear somewhat paradoxical between the two
different scales: the global behavior results in attractive spirals
while the behavior at the individual level is repulsive with
respect to the interior fixed point.

VI. POTENTIAL APPLICATIONS OF DRUNK
GAME THEORY

We have presented our framework in the context of social
consumption of alcohol as it provides an easy-to-relate-to
scenario in which perceptions may change over time, vary
between individuals and change as a consequence of the
outcomes of previous interactions. The analogy, however,
could be extended, in future work, to much more diverse range
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(a)

(b)

(c)

FIG. 7. ABM simulations of the Drunk Prisoner game. Each of
the panels (a)–(c) displays four plots describing the dynamics of the
proportion of cooperators x and average perception α over t = 5 ×
103 rounds. The left plots show the trajectory through the (x, α)-
plane starting from the star. The top plot shows two trajectories for
each of the α initial values, while the bottom plot show the mean over
the whole population. The plots on the right show the evolution of α

(top) and x (bottom) over time. (a) SHG = THG = 0.4 and �(0)
α = 0.04

(circle marker in Fig. 6), (b) SHG = THG = 0.8 and �(0)
α = 0.04 (star

marker in Fig. 6), and (c) SHG = THG = 0.4 and �(0)
α = 0.4 (pentagon

marker in Fig. 6). We see that small amounts of initial heterogeneity
in the population can result in very different outcomes relative to the
mean-field results.

of systems and settings in which interacting agents may have
their own individual states and these states change over time
as a function of their experience. In the following we describe
some examples of systems to which drunk games might be
adapted to.

For instance, experiments have found that in public-goods
games people vary in their personal preferences for fairness,
with some of them being conditional cooperators [55], i.e., co-
operating more as they experience more cooperation. Condi-
tional cooperation has recently been demonstrated to emerge
through different levels of individual understanding of how to
maximize income [56], which we might consider as different
perception states in a drunk game. In pairwise coordination
games it has also been shown that repeated coordination tasks
can elicit a sense of commitment in agents, reminiscent of
an evolving individual state. Because of such commitment,
agents change their perception of the game over time and end
up cooperating more than expected, even through fluctuations
of interest and trust [57].

In addition, time-evolving, individual perception levels are
relevant in the dynamics of social groups or organizations, like
for instance how trust can be built or broken between interact-
ing organizations and/or individuals [30,31], or how innova-
tion and financial investments can alter the perceived benefits
of competing technologies among individual firms [33]. There
may be also other mechanisms for changing perceptions such
as diminishing returns for repeated actions; for instance, the
benefit of scoring points in team sports may change depending
on whether a team is currently leading or not [32]. Also,
those systems that involve some level of consensus forming
are related, e.g., naming conventions in social systems [58] or
quorum sensing in biological systems and insect populations
[59]. In these types of systems individual states are related to
the population density observed by the individual, which will
modify the benefit associated with different actions. Previous
studies indicate that the emergence of synchronization may
be a consequence of an evolutionary noncooperative game
in which individuals decide their behavior according to the
state resulting from their previous interactions [60]. Finally,
in prebiotic chemistry we see analogies to memory and
perception, where replicating RNA molecules change their
conformation in response to previous interactions with other
RNA molecules [61,62].

VII. DISCUSSION

In many complex systems macroscopic, critical behavior
can arise from the combination of simple, local interactions
among individual agents. A crucial example is the emer-
gence of cooperation in game-theoretic settings [3]. Previous
approaches assumed homogeneous interactions both across
agents and over time. Our drunk games provide a new dy-
namical, individualistic view on past approaches, endowing
each agent with a distinct, time-evolving perception of the
consequences of every interaction. In this way, two agents can
engage in the same choice but experience different individual
payoffs. Using a mean-field approximation we can analyze
the behavior of the population at a macroscopic level. This
approach provides us with a indication of how the population,
on average, evolves over time with respect to the strategies
they play and the payoffs they perceive. This coevolution of
perspectives and strategies provides an interesting departure
from the standard mixed games [63,64], in which a given pro-
portion of the population plays one game while the rest play
another. For unstructured populations mixed games produce
a trivial result in which the level of cooperation that emerges
is equal to that of a standard two-player game in which the
payoffs are the average, weighted by proportion of players, of
the two games. In drunk games the proportion of players that
play each game changes in response to the previous outcomes.
Therefore, their analysis is not so trivial anymore and it is
not possible to compare against a simple weighted average
of games.

The mean-field approximation provides analytical
tractability at the cost of treating each individual as an
average player, which potentially may not be representative
of any of the individuals in the population. In principle,
by modeling all individuals with an identical, but evolving
perception state is similar to the accounting for a background
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or environment changing state—the mean-field results of
our Drunk Prisoner game closely resemble the recently
presented oscillating tragedy of the commons [40]. Our
agent-based model simulations thus play a crucial role in
probing the relationship between micro- and macroscopic
behaviors by allowing us to capture the dynamics of the
individuals in the population. When considering populations
of individuals having heterogeneous perceptions, we observe
that qualitatively similar behaviors at the macroscopic scale
can confound very different behaviors at the microscopic
scale. We found that often highly divided initial states
of perception coalesce. This coalescence might seem
unsurprising given that the population is well mixed and
all players interact with every other player. However, our
results are in stark contrast to other settings where small
levels of heterogeneity in initial individual perception
states cause the population to polarize. Furthermore, even
when perceptions coalesce, we find that sometimes the
heterogeneous initialization of perceptions can cause a
complete polarization of strategies.

The framework of drunk games opens up a number of po-
tential avenues of investigation. We considered drunk games
with only two distinct perceptions (payoff matrices). How-
ever, the framework could easily be extended to allow for
a multitude of perceptions by replacing the Bernoulli states
αi with a categorical probability distribution indicating the
probability of playing one of k games. Or to a continuously
varying set of payoffs [65]. Recent evidence indicates that

biological diversity creates differences in the way that individ-
uals transition between cognitive states [66]. Such a finding
might motivate the exploration of a type of drunk game in
which the α function varies between individuals.
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