
Chapter 10
Network Theory in Prebiotic Evolution

Sara Imari Walker and Cole Mathis

Abstract One of the most challenging aspect of origins of life research is that we do
not know precisely what life is. In recent years, the use of network theory has
revolutionized our understanding of living systems by permitting a mathematical
framework for understanding life as an emergent, collective property of many
interacting entities. So far, complex systems science has seen little direct application
to the origins of life, particularly in laboratory science. Yet, networks are important
mathematical descriptors in cases where the structure of interactions matters more
than counting individual component parts—precisely what we envision happens as
matter transitions to life. Here, we review a few notable examples of the use of
network theory in prebiotic evolution, and discuss the promise of systems
approaches to origins of life. The end goal is to develop a statistical mechanics
useful to origins of life—that is, one that deals with interactions of system compo-
nents (rather than merely counting them) and is therefore equipped to model life as
an emergent phenomena.
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10.1 Introduction

One of the most challenging aspects of origin of life research is identifying those
properties of life likely to be characteristic not only of life as it exists today, after
>3.5 billion years of evolutionary refinement, but also at its origin. In reality, the
problem is harder than even this, as we must identify properties of life that could
have preceded its origin and could also be responsible for driving the transition to the
living state. So far, the community of origin of life researchers has seen tremendous
progress in synthesizing different molecular components of life, including lipids and
amino and nucleic acids. This approach assumes the properties of life preceding it
should include some of current life’s basic molecular components (although it is still
debated which ones).1 However, to become life, these molecular components would
necessarily have to interact to generate chemical systems exhibiting the emergence
of increasingly “lifelike” properties. But, what are the emergent “lifelike” properties
prebiotic chemists should focus on?

In biology, it is often the case we deal with highly complex interacting systems,
with hundreds or thousands of components (see, e.g., Fig. 10.1). Understanding the
fundamental processes driving the large-scale organization of living systems is
therefore no small challenge (and it is more challenging still to distill and import
relevant ideas to prebiotic chemistry). Network theory has become an indispensable
tool for making sense of the mess of biology by reducing the study of complex
interacting systems to the study of the statistical properties of their graphical
representation. A graph (or network) is a set of nodes and edges, sometimes with
additional attributes and structure. A simple example is shown in Fig. 10.2. In
chemistry nodes could be molecules, where two molecules are connected by an
edge if they participate in the same reaction. As a mathematical abstraction, net-
works have found utility in describing the large-scale statistical properties of living
systems from the functioning of cells to the organization of cities. For example,
studies of biochemical networks led to the discovery of the “scale-free” structure of
metabolism (see Sect. 10.2), which describes a heterogeneity in the global organi-
zation of chemical reactions associated with bioenergetics, common to all three
domains of life (Jeong et al. 2000). In addition to revealing organizational properties,
once the structure of the graph is known, its generative and evolutionary mecha-
nisms can be identified (Barabasi and Albert 1999) and its robustness and stability
properties characterized (Larhlimi et al. 2011). Network theory therefore provides a
set of mathematical tools, which could be utilized to understand not only the
organization of living networks but also how this organization emerges in the first

1It is important to point out it is an assumption of our theories for the origin of life that the process
started with molecules we would identify as biological. Alternative hypotheses, such as Cairns-
Smith’s “clay world” (Cairns-Smith 1986), make different assumptions. It is a reasonable assump-
tion to make, but in the field of origins where we remain largely in the dark about exactly what
happened, it is important to be aware of the starting points we adopt to make traction on the
problem.
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place. Combining novel techniques from systems chemistry with the mathematical
formalism of network science will enable prebiotic chemists to develop new con-
cepts with testable consequences (Cronin and Walker 2016).

In this chapter, our goal is to introduce the concepts of network theory to prebiotic
chemists as a mathematical formalism for making sense of prebiotic systems and as a
tool to identify the processes driving the emergence of life. We first review the basics
of network theory, discussing some of the successes in its application to chemical
and biological systems. Our focus is on properties of biochemical networks of use to
prebiotic chemists interested in studying the emergence of more “lifelike” chemical
systems in the lab. We also discuss future directions for both how the study of
biochemical networks might inform origin and how the study of chemical networks

Fig. 10.1 A network
representation of global
biochemistry, containing
thousands of compounds
cataloged across organism
on Earth. Highlighted in
yellow are compounds
(represented by nodes in the
network) common to all
three domains of life.
Figure adopted from Kim
et al. (2018)

Fig. 10.2 A network with
nodes (circles) and edges
connecting them (arrows).
Here, additional attributes
and structure include
labeling of nodes and arrows
on the edges, respectively

10 Network Theory in Prebiotic Evolution 265



relevant to the origin of life might also provide tighter constraints on what network
properties could truly distinguish living from nonliving organization.

10.2 What Is a Network?

The phrase “World Wide Web” vividly captures the complex web of interactions
connecting computers across the globe. Many other biological and technological
systems share similar weblike structure, being comprised of many heterogeneous
interconnected components (see, e.g., Fig. 10.1). Over the past several decades, it
was realized a new statistical mechanics was necessary to describe such systems,
which goes beyond the nineteenth-century statistical mechanics of idealized
non-interacting particles to include the topology of interactions among system
components and their resultant dynamics (Albert and Barabási 2002) The natural
mathematical framework for developing such a theory is network theory, which
projects the complex web of interactions in real systems onto an abstract represen-
tation as a graphical object (Barabási 2016). Networks are important mathematical
descriptors in cases where the structure of interactions matters more than counting
individual component parts—precisely what we envision happens as nonliving
matter transitions to life. Due to its utility in concisely describing complex,
interacting systems, network theory has been applied to an increasing number of
systems in fields ranging from biology (Barabási and Oltvai 2004), to engineering, to
the social sciences (Wasserman and Faust 1994).

Mathematically, networks are studied using the tools of graph theory, where
entities are represented by nodes (also called vertices) and their interactions by
edges (also called links), as in the simple network shown in Fig. 10.2 where nodes
are depicted as circles and edges as arrows. Familiar examples include social
networks, such as Facebook, where the nearly two billion individuals on Facebook
could be mathematically represented by nodes and their friendships by edges
(in practice it is difficult computationally to construct and analyze networks this
large, but many networks of interest are smaller than Facebook or subnetworks can
be studied). In a graph-theoretic representation of Facebook, an individual would be
connected to every individual they “like,” and network dynamics might include
studying how the structure of interactions changes as individuals “like” and “unlike”
one another or as new individuals are added to the network and others lost from
it. Likewise, chemical species reacting with one another form networks within cells
where nodes represent molecular species or reactions and edges represent connec-
tions of molecular species to reactions they participate in (see Fig. 10.3).

There are in fact many different ways to represent a network. For example, the
Facebook network mentioned above could be represented as a directed network,
meaning that the connections between nodes are not symmetric but instead reflect
the directionality of “like” relations. Cole “liking” Sara’s Facebook page does not
imply Sara also “likes” Cole’s page. The network in Fig. 10.2 is an example of a
directed network, where edges are represented by arrows delineating the
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directionality of the relationship (in the Facebook example, a “like” relationship
might point from the node labeled “Cole” to the node labeled “Sara”; if Sara also
“likes” Cole’s page, there would also be an arrow connecting the same two nodes but
pointing in the opposite direction). Networks may also be undirected, where edges
do not encode the directionality of the relationship. The choice of network is often
motivated by the problem of interest and the measures one is interested in calculating
(e.g., there is a richer literature of network measures for undirected networks as they
are simpler, but the trade-off is they do not capture as much information as
directed ones).

There are many different ways to graphically represent chemical systems, each
permitting quantitative analysis of different aspects of global organization and in
turn identification of the role of specific molecules in the robustness and function of
living systems. Two examples of the most commonly implemented graphical repre-
sentations for chemical systems are shown in Fig. 10.3, which both represent the
following sequence of reactions:

Hþ HCl ! H2 þ Cl
HClþ O ! Clþ OH

HClþ OH ! Clþ H2O

The left panel of Fig. 10.3 shows a bipartite network, called a reaction-substrate
graph, where substrates (reactants and products) and their reactions are both nodes
and edges connect substrates to their relevant reactions. Bipartite networks are
so-called because there exist two distinct types of nodes in the network: here,
molecular species represent one type of node (circles), while chemical reactions
represent the other (squares). The representation of the same network in the right
panel of Fig. 10.3 is an example of a unipartite, substrate-substrate graph, where
reactions are abstracted away and reactants are directly connected to products by an
edge (if they are from the same reaction). A further refinement in the unipartite graph
is representing edges as undirected (loosing directionality in the relationship of
substrates and products as discussed above). In the substrate-substrate

Fig. 10.3 Two different graphical representations of the same chemical reaction network. On the
left is a bipartite substrate-reaction network, and on the right is shown the same system represented
as a unipartite substrate-substrate network (see text for descriptions)
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representation, an edge between a pair of nodes can be thought of as a group of
processes converting some molecular species to others. There are many other types
of network descriptors including weighted networks (Newman 2004), where edges
have a strength of weight associated with them, and multilayer networks, which
contain different types of edges representing different connections (Boccaletti et al.
2014). Selection of which graphical representation to use depends on the question of
interest and the relevant quantities to be measured. A review of many of the different
representations of biochemical networks and their utility and shortcomings as
applied to different scientific questions is discussed in Montañez et al. (2010).

10.2.1 Measuring Statistical Properties of Networks

In a seminal paper published in 2000, Jeong et al. reported metabolic networks of
43 distinct organisms—representing all three domains of life—are scale-free (Jeong
et al. 2000), meaning their degree distributions roughly follow a power-law P(k)~k�α.
An example of a scale-free network is shown in Fig. 10.4a and the corresponding
power-law degree distribution in Fig. 10.4c. Here, P(k) is the probability a given
molecular species participates in k reactions. In graph theory k is called the degree of a
node, corresponding to the number of edges connected to it. The degree distribution,
or degree sequence, is the probability distribution of node degree taken over an entire
network.2 In the simple example network of Fig. 10.1, the degrees are 2, 2, 3, 1, and
3 for nodes 1, 2, 3, 4, and 5, respectively, yielding a degree distribution of P(k)¼ 1/5,
2/5, and 2/5 for k ¼ 1, 2, and 3, respectively. This distribution has a mean degree
hki ¼ 2.2, and there are no outlier nodes with a significantly higher degree than the
others. In this respect, the network is fairly homogeneous (the network in Fig. 10.2 is
of course is too small to make statistically meaningful statements, but it serves for
illustrative purposes). For a longtime it was thought most networks were homoge-
neous, but in the late 1990s and early 2000s, it was discovered most real-world
biological and technological networks are in fact very heterogeneous, with heavy-
tailed degree distributions consistent with power-law or lognormal fits [see, e.g.,
Barabasi (2009) for perspective]. In many real-world networks, most nodes have very
few connections, but a few nodes called hubs have many connections and link less
connected nodes together. The discovery of the power-law scaling in metabolic
networks by Jeong et al. was part of this watershed moment in our understanding
of the organization of biological and technological systems, but the significance of
this property and its evolutionary origins still remain poorly understood.

In our Facebook example, a very small minority of Facebook’s >2 billion users
are hubs, such as Mark Zuckerburg with 98,885,179 “likes” (as of writing).

2The degree distribution is calculated by determining the frequency of the degree for each node, and
is often normalized by dividing by the total number of edges in the graph, which can be interpreted
as a probability of connection and the resulting distribution interpreted as probability distribution.
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Individuals with only a handful of connections are much more common but are also
much less connected (e.g., by comparison the authors each have only a few hundred
“likes”). As with social networks, metabolic networks also contain hubs, which
include highly utilized molecules in biochemistry such as H2O and ATP (Andreas
Wagner 1998). These molecules participate in hundreds of reactions, with a com-
parably high node degree, whereas the mean degree of metabolic networks globally
is in the range of just 2–5 connections (Jeong et al. 2000; Kim et al. 2018). Projecting
metabolism onto a substrate-substrate network representation yields fits for the
degree sequence that in general follow a power-law fit, indicative of scale-free
structure. However, rigorously confirming a power-law fit for a given degree
distribution is a challenging technical problem and an active area of research in
the statistical inference community. In recent years, new tools have been developed
for reliably determining cases of scaling consistent with a true power-law behavior,
as opposed to other heavy-tailed degree distributions, such as lognormal (see, e.g.,
Clauset et al. 2009). Our recent analysis applying these tools to a dataset of>28,000
biochemical networks extracted from genomic and metagenomic data revealed a
majority of biochemical networks can plausibly be fit to true power-law scaling, but

Fig. 10.4 Homogenous (left) and heterogeneous (right) networks. Shown are (a) a Erdös-Rényi
(ER) random graph and (b) a scale-free network. Node sides correspond to degree in both images.
Corresponding degree distributions are shown in (c) for the Poisson degree distribution character-
istic of ER random graphs and (d) the power-law degree distribution indicative of scale-free
network structure
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not all (Kim et al. 2018). A further complication is scale-free structure can depend on
the network projection, leading to complications in interpreting results of fits to
degree distributions without reference to other properties of the network or random-
ized controls.

Nonetheless, important structural differences between networks can often be seen
directly from the degree distribution and other topological measures: in many cases
these are indicative of properties that seem to be distinctive to living networks. For
example, random networks, such as Erdös-Rényi (ER) networks, are characterized
by degree distributions which are Poisson distributed, meaning that most nodes share
roughly the same number of edges and the probability is exponentially suppressed
for the highest degree nodes (the P(k)~e�k for k � 1) (Erdös and Rényi 1959).
Because most nodes share similar degree, random networks are described as homog-
enous in their distribution of edges among nodes (like our small network in
Fig. 10.1). An example of a homogenous network is shown in Fig. 10.4b and the
corresponding Poisson degree distribution in Fig. 10.4d. The network structure and
degree distribution are visually very different for homogeneous networks when
compared to heavy-tailed or “scale-free” networks. Due to these structural differ-
ences, the systematic observations of heterogeneous networks in living systems
provides a window into their large-scale organizational properties that distinguishes
living networks from generic random ones. One key structural difference from an
evolutionary standpoint is robustness to random mutation: random loss of nodes in
heterogeneous networks will most often not affect overall topology so long hubs
remain intact, whereas for homogenous networks, there are no hubs to maintain
overall network connectedness. As such, heterogeneous networks are in general
more robust to random failure or mutation, perhaps motivating their preferential
selection in living organization.

In order to characterize a network, a number of different statistics about the
network can be measured beyond degree distribution alone (Barabási 2016). For
example, the mean degree of the network, as mentioned above, can be calculated as
the mean value of the degree distribution and provides information about how
connected each node in the network is on average. For directed networks this can
be broken down into two contributing terms: the mean in-degree (number of edges
pointing into a node) and mean out-degree (number of edges emanating from a
node), which represent sinks and sources in chemical transformation space. Another
important network statistic, the average shortest path length, measures the average
number of steps it would take to get from one node to any other node in the network
by taking steps along its edges. That is, it quantifies the minimal number of chemical
transformations it takes, on average, to convert one molecular species to another.

Networks with a low average shortest path length are sometimes said to have a
small-world property because it is relatively easy to get from one node to any other:
one need only traverse a few steps. Readers may be familiar with the term “six
degrees of separation” to describe this small-world property in human social net-
works. For a while it was thought metabolism too had the small-world property,
meaning it only should take a handful of chemical reactions to transform any
molecule to any other in a biochemical network (Wagner and Fell 2001). However,
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subsequently, it was discovered metabolism is not small in a study performing
detailed analysis of the network structure of E. coli (Arita 2004). In the context of
prebiotic chemistry, we need an accurate picture of the structure of biochemical
networks in order to identify how they can be generated in the absence of life—only
then will we be able to map this to the appropriate chemical and physical properties
driving prebiotic network evolution (not a small task!).

There are other network measures too that could aid in this effort. Another
important statistic is betweenness centrality, which measures how often a particular
node is on the shortest path between all other nodes in the network. Nodes with high
betweenness centrality can sometimes be low degree but nonetheless essential to
dynamics and function since they play a key structural role by connecting many
otherwise disconnected or distant nodes. In many cases however, high betweenness
centrality is correlated with high degree (hubs). For example, in a network repre-
sentation of social media interactions, one might expect Barack Obama to have high
betweenness centrality as he is a highly connected node (hub) through which many
other individuals are connected. In biochemical networks, molecules like H2O and
ATP tend to have both very high degrees and high centrality, due to their funda-
mental roles in aqueous organic chemistry and metabolism, respectively. Hubs with
high betweenness are therefore often among the most vulnerable nodes in a network
for directed attack (rather than random loss): targeting removal of such nodes can
lead to a network breaking apart into smaller isolated graphs. This is a chief
vulnerability of the Internet (Cohen et al. 2001) and is often more technically
discussed in terms of breaking apart the largest connected component of a network.
A connected component is a subgraph of a network (e.g., a subset of nodes) where
there exists a path between any two nodes in the subgraph. For understandable
reasons, metabolic networks are dominated by a single large connected component
[see, e.g., supplement of Kim et al. (2018) for size of largest connected component in
biochemical networks]. The idea of connected components becomes important in
discussions of graph-theoretic models of the origins of life, such as autocatalytic sets,
which also form as connected components (discussed in Sect. 10.3). The early
emergence of molecules with high betweenness centrality may have therefore been
critical to rapid formation of connected components in prebiotic evolution. Identifi-
cation of molecules fulfilling this role prebiotically could therefore provide insights
the emergence of many key structural properties of living networks.

Many of the measures discussed so far track statistical properties of individual
nodes, or paths between two nodes, but there are also many measures for higher-
order properties of networks. For example, clustering coefficient tracks how many
tightly knit communities exist within a given network, typically measured by
counting the number of complete triangles connecting three nodes. Networks with
high clustering coefficients have many clusters of nodes with above-average con-
nections between them (relative the rest of the network). Complete triangles repre-
sent one example of a network motif. Network motifs are subgraphs which have
specific connection patterns and which are overrepresented in biological systems
with respect to randomized networks (Milo 2002). They were first uncovered in
networks as diverse as those from biochemistry, ecology, neurobiology, and
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engineering and have been proposed as a means to uncover the building blocks of
functional networks (Alon 2003). From this perspective, they are an important
concept for prebiotic evolution—identifying the network motifs which readily
form under abiotic conditions and could combine to form more complex, lifelike
systems would advance our understanding of key structural properties needed for
assembly of living networks. As just one example, we recently constructed all
possible three-member networks of cooperating RNA using reaction rate data from
a real RNA system based on the Azoarcus ribozyme (Mathis et al. 2017b). The
goal was to determine the types of cooperation possible when building prebiotic
networks from their component parts. Here cooperation was defined in terms of the
structure of the subgraph (see Mathis et al. 2017b). Our results demonstrate the
triplet network interactions among genotypes (nodes) in the real Azoarcus ribozyme
system were intrinsically biased to favor cooperation due to the particular distribu-
tion of catalytic rate constants in the real system, as compared to other possible
distributions for the rate constants. This example demonstrates how coupling prop-
erties of chemistry with network structure can provide new insights into the emer-
gent properties of prebiotic networks, such as whether we should expect them to be
cooperative.

10.2.2 Generative and Evolutionary Models

Knowledge of topological properties, such as the small-world property or scale-free
structure, can provide insights into how networks with those properties can arise in
the first place. To get at the interesting properties, we must first identify what features
are expected to arise randomly. There are many different models to generate random
networks for comparison. These models are known as random graphs. We intro-
duced above the first class of random graphs to be formalized, the ER graph, which
was developed by Erdös and Rényi in 1959 (called Erdös-Rényi or ER random
graphs) (Erdös and Rényi 1959). ER random graphs are defined by the number of
nodes (n) and number of edges (v) they contain. A single instance of an ER random
graph is generated by starting with n unconnected nodes and randomly assigning
edges between nodes with equal and independent probability p, until v edges exist.
For a very long time, it was assumed that ER random graphs represented ideal null
models for network organization. However, as more empirical examples of networks
were accrued through the 1970s and early 1980s, it became apparent that ER random
graphs failed to produce statistical features common in real-world networks, such as
high clustering coefficients, small-world topology, and heterogeneous degree distri-
butions discussed above.

The degree distribution of ER random networks is always homogeneous,
described by a Poisson distribution. These provided a stark contrast with real-
world networks which are observed to have small-world properties and heteroge-
neous degree distributions. To address this, in 1998 Watts and Strogatz published a
random graph model combining some properties of ER random graphs with regular
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graphs (which are similar to lattice structures) in order to generate networks with
high clustering coefficients and small-world properties, much like real-world sys-
tems (Watts and Strogatz 1998). However, these failed to produce the heteroge-
neous, heavy-tailed degree distributions characteristic of many real-world systems.
In 1999 Barabási and Albert introduced a model using preferential attachment to
generate networks with the desired scaling properties (Barabasi and Albert 1999).
Preferential attachment models start with a small network of nodes and add nodes
one at a time to the network by preferentially attaching new nodes to nodes with high
degree. In the context of life’s chemical networks, such a growth model would imply
metabolic networks grow by adding new metabolites, with the most highly
connected nodes also being the most likely candidates for being the oldest.
Among these ancient, highly connected nodes in metabolism are intermediates of
glycolysis and the tricarboxylic acid cycle (TCA); consistent with the hypothesis of
Morowitz and later Smith and Morowitz, the evolution of biochemistry is recapitu-
lated in intermediary metabolism (with TCA being among the most ancient compo-
nents) (Smith and Morowitz 2016). However, modifications to the Barabási-Albert
preferential attachment model are necessary to explain the network evolution of
biochemistry: the model always produces exactly scale-free networks, whereas
observed biochemical networks have heavy tails but are not precisely scale-free
(see Kim et al. 2018; Clauset et al. 2009). A number of models have been developed
to address this gap (e.g., Bianconi and Barabási 2000). Identifying prebiotically
relevant random graph models will be an important step toward understanding the
transition from nonliving to living matter.

10.3 Prebiotic Chemical Networks: Prospects and Promise

An important feature of the Erdös-Rényi (ER) model described in the previous
section is the existence of a phase transition as the probability of two nodes being
connected by an edge increases. At a critical connection probability, pc,
corresponding to a critical mean degree, ER graphs transition from having many
disconnected components to being dominated by one large connected component.
Although this transition occurs within an abstract mathematical object, it has impli-
cations for the origins of life. Kauffman was the first to recognize this link
(Kauffman 1993). In a stroke of insight, he realized a similar process should exist
in chemistry: if enough reactions are possible in a given chemical system, one should
end up with a large connected set of reactions. Chemical reaction networks should
therefore exhibit a phase transition much like the ER transition, where increasing the
number of possible reactions among a set of molecules induces a transition from
many disconnected networks to a large connected one. To model this process, he
considered abstract proteins represented as binary sequences of “0”s and “1”s, often
referred to as binary polymer models in the artificial chemistry literature. An
example autocatalytic network of binary polymers is represented in Fig. 10.5.
Kauffman showed that if there is a small, independent, and identical probability
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p that any protein up to a length L catalyzes any given reaction, then the probability
P of finding a connected set, such as the one in Fig. 10.5, increases as the length L of
the longest sequences increases. In fact, in the mathematical model, the probability
approaches 100% as the max length L of the proteins grows, even if the probability
of any given protein being catalytic active, quantified by the p, is made arbitrarily
small. Placed within the broader context of network theory discussed in Sect. 10.2,
Kauffman was not only looking for connected components but a specific motif. His
interest was in collectively reproducing sets of molecules: these are network motifs
composed of closed cycles of reactions. Analyzing chemical reaction graphs for the
existence of these motifs forms the foundation of autocatalytic set theory, the first
systematic application of network science to prebiotic chemistry.

Other elements of network science have been suggested in prebiotic chemistry
over the years, although they are often not studied with the formalism of graph
theory. As one example, in 1978, Eigen and Shuster introduced the hypercycle as a
proposed solution to the error threshold problem in prebiotic evolution (Eigen and
Schuster 1978). The error threshold sets a fundamental bound on the minimal
amount of information necessary to transmit between successive generations for
heredity to be possible (Eigen 1971). For a prebiotic replicator, such as a self-
copying RNA, this bound is approximately a mutation rate μ ¼ 1/L,where μ is the
mutation rate per monomer and L is the length of the sequence (in reality the critical
mutation rate depends on the shape of the fitness landscape). In prebiotic systems,
before the evolution of error-correction mechanisms of modern cells, error rates were
high. The intrinsically high error rates of nonenzymatic templated replication place a
strict limit on the amount of information an individual sequence can faithfully copy
before error-correcting enzymes evolved. In the words of Szathmary and Maynard
Smith, this encompasses a catch-22 for prebiotic evolution: “no enzymes before
genes, no genes before enzymes” (Smith and Szathmáry 1995). The hypercycle, as

Fig. 10.5 Example of an
autocatalytic network within
the binary polymer model,
where polymers consisted of
two monomer species “0”
and “1.” In this multilayer
graph, black nodes represent
molecules, white nodes
represent reactions, black
arrows connect molecules to
reactions they participate in,
and gray-dashed arrows
point from catalysts to
reactions they catalyze.
Figure adopted from
Hordijk et al. (2012)
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first imagined by Eigen, was proposed as a resolution to this paradox. His idea was to
couple two or more replicating species, where each was capable of promoting the
replicative efficiency of the other forming a cyclic graph with self-loops; see
Fig. 10.6. This constitutes a simple network, where every chemical species can be
represented as a node and catalytic connections by edges. Thinking graphically, a
solution to the error threshold problem is to distribute information over a network of
interacting molecules, rather than storing all of it within a single molecule. For a
number of decades, Eigen’s idea remained hypothetical, but recently hypercycle
networks have been demonstrated in real chemical systems of interacting RNA
molecules, providing an important empirical window into understanding potential
early stages of evolution and cooperation in molecular systems (Vaidya et al. 2012).

10.3.1 Autocatalytic Set Theory

Chemically, autocatalytic sets are collections of molecules, where every molecule in
the set is produced by a reaction catalyzed by another molecule in the set. Graph-
ically, autocatalytic sets represent a class of subgraphs, or network motifs, with
directed paths forming closed cycles. It is in this respect the hypercycle can be
considered an example of an autocatalytic set. Since the early work of Kauffman,
Eigen, and others exploring how closed cycles might lead to collectively
reproducing systems, there have been a number of efforts to both develop better
theoretical and experimental approaches to understanding these systems. Of note,
Kauffman’s original idea has been formalized within the context of RAF theory.
RAF is short for reflexively autocatalytic and food-generated. RAF sets are graph-
ical structures forming closed cycles with inputs for food to the cycle (Hordijk and
Steel 2004; Hordijk et al. 2012). Within this formalism a variety of properties of

Fig. 10.6 A graphical
representation of a three-
node hypercycle composed
of three replicators I1, I2, and
I3. Self-loops indicate self-
replication and directed
arrows between nodes
indicate direction of
catalysis
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autocatalytic sets have been proven over the past few years, strengthening the
potential prebiotic relevance of the theory. In particular, a major criticism of
Kauffman’s original model was the required level of catalysis, which was deemed
too high to be realistic (Lifson 1997). Within the RAF formalism, Hordjik et al. have
proven autocatalytic sets are guaranteed for realistic levels of catalysis and when
more complicated constraints of real-world chemistries are imposed (such as base
pairing) (Hordijk et al. 2011).

Computational and analytical results show autocatalytic sets are common in
chemical reaction networks with random independent and identically distributed
catalysts (Hordijk and Steel 2017) and also occur in more realistic scenarios with
heterogeneously distributed rates of catalysis (Hordijk et al. 2014). However, while
autocatalysis is a common network motif, multiple studies have shown that relatively
few networks are capable of fixating dynamically when kinetics are taken into
account. Wynveen et al. simulated the dynamics of a binary polymer system
constructed using the same algorithm as Kauffman. They demonstrated that relatively
few networks were able to depart from an expected maximum entropy state, meaning
that networks composed of random and identically distributed catalysis rarely display
“lifelike” dynamics (Wynveen et al. 2014). Similarly, Filisetti et al. found only a
small fraction of autocatalytic sets which were able to increase the abundance of their
constituents above a background level expected nonenzymatically (Filisetti et al.
2012).

As theory improves and makes closer contact with experiment, the challenge
ahead will be to understand better the properties of real biochemical networks and
how those arise prebiotically. It has already been confirmed RAFs exist in real
biochemical networks, such as the metabolic network of E. coli (Sousa et al.
2015). Additionally, some work has been done to connect RAF theory to the
structure of real biochemical networks. When Kauffman originally devised autocat-
alytic set theory, it was thought most real-world networks were homogenous, like the
ER model. However, as discussed above, it was subsequently discovered heteroge-
neous networks are more common in real-world systems. Recent work has also
shown RAFs are common in catalytic networks with power-law distributed catalysis
(Hordijk et al. 2014), which more closely resembles the distribution of catalysis in
metabolic networks. Future work should further the connections between these
abstract models and the properties of real biochemical networks.

10.3.1.1 Evolvability of Autocatalytic Sets

A key transition in the origin of life on Earth was the emergence of Darwinian
evolution via natural selection (Nowak and Ohtsuki 2008). Natural selection requires
mechanisms to generate variation among individuals, which can then be selected.
For single molecule replicators or single cells, these requirements are easy to satisfy
as the “unit” of evolutionary selection is readily identifiable (a replicating sequence
or cell, respectively). However, for collectively reproducing systems without a well-
defined boundary of “self” and “other,” the concepts of individuality and heredity
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are poorly defined. It is not yet even clear well-defined units for selection exist in
such systems. As such, the evolvability of catalytic networks has been a subject of
intense debate in origin of life research. At stake is whether catalytic networks are
indeed a viable alternative to genetic polymers as the first hereditary system capable
of Darwinian evolution.

Among models proposed for catalytic network evolution is the “lipid world”
scenario proposed by Segré, Lancet, and collaborators (Segré et al. 2001). The
model system includes simulated random networks with lognormal distributed
catalytic efficiencies, meant to capture aspects of the asymmetry of catalytic
efficiency in real systems. The lognormal distribution of catalysis can be modeled
by a strongly connected, weighted network. From this model, Segré et al. have
shown in some situations these networks are capable of evolution by natural
selection (Segre et al. 2000). However, using the same model, Vasas et al. have
shown that, in general, these networks cannot be evolved to generate arbitrary
steady states (Vasas et al. 2010). The problem arises because random networks
generated using the lognormal catalytic distributions contain subtle motifs which
prevent the maintenance of variation between competing networks. This led Vasas
et al. to claim that autocatalytic networks, in general, are not evolvable. In subse-
quent work, Vasas et al. investigated the evolvability of autocatalytic sets similar to
those first suggested by Kauffman (Vasas et al. 2012). These more recent results
suggest autocatalytic sets can indeed evolve in a limited sense, as long as they
contain multiple viable cores. Viable cores are a specific network motif composed
of completely connected catalytic subgraphs. Taken together, these results indicate
it may be possible for catalytic networks to evolve in the absence of genes, but the
details are sensitive to network topology in ways genetic propagation of informa-
tion isn’t (perhaps one selective factor in the transition to genetic heredity during
early evolution).

The jury is still out on whether general, evolvable models of catalytic networks
are possible and what the key properties of such networks might be. In an attempt to
summarize the current state of the field, and to project what network properties might
emerge as those most essential to defining evolvability, Nghe et al. recently identi-
fied six key network parameters to focus research efforts (Nghe et al. 2015). Among
these were the concepts of viable cores. Other parameters include familiar concepts
in prebiotic chemistry, such as resource availability, and compartmentalization.
Resource availability is essential to maintaining collective reproduction (e.g., the
“food” in RAF sets), and compartmentalization is essential for forming selectable
units (this could occur via localization on a surface and need not be physical
compartmentalization). Other parameters may be less familiar and are more intrinsic
to network organization, including its connectivity, controllability, and scalability.
Connectivity, combined with the availability of resources determines how effec-
tively molecular species outside of viable cores can be produced. Very sparse, poorly
connected networks will have limited evolvability, as there are no paths for transi-
tions between graphs. In the other extreme, networks that are too densely connected
will generate non-specific tars. Controllability can be implemented in chemical
system through dynamic feedback. These feedbacks stabilize network dynamics
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against random perturbations, enhancing the robustness of chemical networks in
fluctuating environments and can play a critical role in inheritance. As one example,
Kaneko and collaborators have worked out a model catalytic network, where
reproduction is controlled by a “minority” population of molecules regulating the
behavior of the rest of the network. Their proposal is that these minority molecules
played the role of primitive genes (Kaneko and Yomo 2002). The scalability of
chemical networks refers to an ability to grow in size while maintaining functional
modules. In order to scale efficiently, prebiotic chemical networks must be sparse,
meaning most nodes have few connections, reducing the likelihood new functional
modules will interfere with the rest of the network. This introduces a tension between
scalability and evolvability as sparsity favors one but not the other. In order to
understand the evolution of primitive chemical networks, future studies must con-
strain these six key parameters in real networks, and theory must be developed to
better understand how each impacts evolutionary outcomes.

10.3.2 Autocatalytic Sets in the Lab

Identifying and exploring dynamic, complex chemical networks represents a major
analytical challenge for organic chemists. The most interesting aspects of complex
(bio)chemical networks are due to interactions between tens to thousands of dynam-
ically coupled reactions, meaning any given network cannot be understood as the
sum of many isolated reactions. Many of the standard techniques for characterizing
reaction products depend on identifying single molecule products which can be
compared to lab standards. Understanding the properties of chemical networks
depends on first understanding how the topology of the networks is related to their
dynamics. Luckily, there are many questions in this area that can be addressed using
different chemical models, and the earliest investigations of chemical networks have
come from polypeptide systems as well as RNA systems.

In 2003 Ashkenasy et al. predicted and constructed a complex network of peptide
fragments (Ashkenasy et al. 2004). The authors had previously demonstrated a
reaction between electrophilic (E) and nucleophilic (N) peptide fragments could be
promoted by a template peptide (T). The peptides form a quaternary complex, and in
isolated reactions they had shown that the efficiency of the reactions could be
predicted by the stability of the complex, which could be in turn estimated from
the template structure. Using nine different templates, Ashkenasy et al. constructed a
weighted network with the templates as the nodes and while the edges represented
the predicted catalytic pathways, a schematic representation of this network is shown
in Fig. 10.7. When they implemented this network in the lab, they found that some of
the predicted edges were not realized due to competition for shared substrates. This
network represents one of the earliest physical instantiations of Kauffman’s auto-
catalytic set theory. This work demonstrates real chemical networks are not simply
the sum of all possible reaction pathways but include emergent properties arising due
to the complex interplay between topology (catalytic efficiency) and dynamics
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(resource availability) [see, e.g., also Vaidya et al. (2013) for a combined theory-
experiment model of the role of limited resources in RNA systems] (Fig. 10.7).

In 2012 Vaidya et al. demonstrated hypercycle networks could form spontane-
ously in RNA networks, using the Azoarcus ribozyme system, one of which is
shown in Fig. 10.8 (Vaidya et al. 2012). The Azoarcus ribozyme is a ~200 nt
RNA sequence capable of self-assembly. By varying four different bases in the
ribozyme, 48 different genotypes can be made. Each genotype can catalyze its own
assembly as well as the assembly of other genotypes with different efficiencies.
Lehman et al. demonstrated strongly cooperative triplet motifs could form, within
the larger 48 node network. Subsequent studies have shown the dynamics of those
motifs can be described using the tools of evolutionary game theory, suggesting the
networks are evolvable. Our work on the degree of cooperation within triplet motifs
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Fig. 10.7 Illustration of a self-organized peptide network composed of 25 nodes joined by
53 edges. Nodes are different peptide templates, while edges represent catalytic activity. Adapted
from Ashkenasy et al. (2004)

Fig. 10.8 Network structure of cooperative RNA hypercycle. Node labels correspond to different
genotypes, while edges represent catalytic activity. Node sizes correspond to steady-state abun-
dances. Adapted from Vaidya et al. (2012)
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demonstrated that the catalytic rates observed in the lab, which are derived from the
energetics of RNA base pairing, promoted the frequency these cooperative triplets
relative to selfish alternatives (Mathis et al. 2017b). A key result of the 2012 study
was the observation cooperative interactions among related RNA replicators can
lead to the spontaneous formation of ordered dynamics (Vaidya et al. 2012). This
highlighted the key role of network interactions in understanding the spontaneous
organization of lifelike entities (Fig. 10.8).

10.3.3 Network Expansion

Autocatalytic sets were envisioned as self-generating networks, which collectively
can act as selectable evolutionary units. A different approach to the application of
network-theoretic ideas to understanding the early evolution of biochemistry is to
instead consider the properties of ecosystem or biosphere-level models (without
specific knowledge of individual evolutionary units). One motivation for this
approach is the observation extant ecosystems display greater regularity in terms
of their stability and function than individuals do (Dinsdale et al. 2008). If we are to
uncover general, and perhaps even universal, principles of biological organization
through a network-based approach, it is therefore at the level of ecosystems (or even
the biosphere as a whole) where we may have the greatest success (Smith and
Morowitz 2016). Under this view, compartment-free, ecosystem-level models
could provide the most promising insights into the processes governing the emer-
gence and evolution of life’s biochemical networks. It is worth noting we also do not
know the level of complexity where “individuals” first emerged in prebiotic
evolution.

One approach, first developed by Handorf et al. (2005), implements network
expansion algorithms to explore the temporal order of incorporation of metabolic
pathways in global biochemistry (Handorf et al. 2005). Network expansion lever-
ages the availability of databases, such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Ogata et al. 1999), which provide publicly accessible catalogs
containing a large majority of all known biochemical reactions (the network in
Fig. 10.1 was generated from all enzymatic reactions cataloged in KEGG). The
algorithm proceeds by recursively determining the set of all possible molecules (the
“scope”), which can be produced from an initial “seed set” of molecules. Each time
the algorithm is iterated, the newly produced products of reactions are added to the
graph, expanding the network. Prebiotically relevant seed sets might include simple
molecular species proposed in different origin of life scenarios, such as H2CO,
CH3SH, NH3, and P2O7

4�, for example (see, e.g., Handorf et al. 2005). Starting
from a given seed set, and iteratively expanding the network along all possible
enzymatically catalyzed reactions, permits asking questions about the ordering and
interdependency of the expansion of biochemical networks at a global scale. For
example, Raymond and Segre utilized network expansion on a biosphere-level
network representing global biochemistry to uncover a critical role for O2 in

280 S. I. Walker and C. Mathis



permitting the emergence of metabolic pathways associated with complex life
(Raymond and Segre 2006). Network expansion has also been implemented to
study the coevolution of enzymes and metabolic pathways, revealing enzymatic
novelty emerging in punctuated clusters corresponding to enzyme classes (Schütte
et al. 2010).

More recently, network expansion has been applied directly to a problem of
relevance to the origin of life—could a primitive core metabolism exist in the
absence of phosphate? The answer, according to Goldford et al., is “yes” (Goldford
et al. 2017). Starting from a set of prebiotically plausible seed molecules, exclusive
of phosphate, they identified a phosphate-independent core metabolism, which could
in principle support synthesis of a broad array of bioessential compounds. This
model lends support to the concept of a “thioester world,” preceding the use of ATP
as the major energy currency of life. Other origin of life theories could similarly be
tested with network expansion algorithms to identify possible ancestral networks,
which could then be leveraged to generate new hypotheses about different origin of
life scenarios.

10.3.4 Graph Grammars and Generative Models

One challenge of the approach provided by network expansion is it is not predictive
but can only retrodict the potential pathways by which metabolism could have
expanded through evolutionary history. Ideally, we should be able to predict all
possible chemical pathways and networks and then identify the possible paths
traversed in transitioning from nonlife to life and in the subsequent evolution of
life. With this knowledge in hand, it would be easier to ask questions about why life
arose and what its characteristic properties are. To do this, in addition to knowing the
biochemistry of life, we must have some knowledge of the chemical networks not
selected by life. Predictive theory in chemistry is an area of intensive research, with
much progress made but much further to go. One promising area is the development
of graph grammars as applied to predicting transformations on chemical structure. In
this approach, a molecule itself is mathematically represented as a graph, where
atoms correspond to nodes (vertices) and bonds to edges in the graphical represen-
tation of a molecule. Reactions are then modeled as rewiring transformations that
transform the graph into another graph (representative of a different molecule)
(Andersen et al. 2017). As an example of the application of graph grammars to
prebiotic chemistry, this formalism has been applied to HCN polymerization, dem-
onstrating the combination of graph grammars with experimental data can lead to
guide exploration of different chemical pathways and roots to open-ended evolution
(Andersen et al. 2013).

As systems biologists, network theorists, physicists, biochemists, and others
collaboratively illuminate the structure of biochemical networks and the generative
mechanisms which produce them, prebiotic chemists are charged with the task of
explaining the origins of that structure. In order to effectively explain the topological
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properties of living networks, prebiotic network scientists will need to choose
random network models to compare their networks against. The ubiquity of hetero-
geneous degree distributions suggest the Barabasi-Albert model might be a good
place to start; however, the modularity described by Jeong et al. implies random
hierarchical graphs might be better suited (Ravasz et al. 2002). Each random graph
model contains within it implicit assumptions about the generative mechanisms
involved in networks. For a given network and a set of questions about it, the
appropriate random models will be different. For example, we recently compared
the network structure of biochemical networks at the scale of individuals, ecosys-
tems, and the biosphere as a whole (Kim et al. 2018) (see discussion below). For this
work, the appropriate random graph for individual organismal biochemical networks
involved constructing networks by randomly sampling biochemical reactions from
the KEGG database, while the appropriate random graph model for ecosystems
instead constructed networks by randomly sampling whole genome networks and
merging them.

Prebiotic chemists, who straddle abiotic organic chemistry and biochemical
networks, will need to develop appropriate random models to understand the
transition from nonliving to living networks. Graph grammars provide a useful
framework for understanding the generative mechanisms underlying organic chem-
istry, while thermodynamic calculations can generate networks of plausible geo-
chemical reactions. An important next step in understanding the large-scale structure
of biochemical reaction networks will involve deploying machine learning tech-
niques to infer the generative mechanisms underlying those networks. Once those
generative mechanisms are identified, comparing them to expected abiotic mecha-
nisms will allow prebiotic chemists to separate the roles of chance and necessity in
the evolution of biochemical networks.

10.4 Future Directions

So far, we have discussed general background in network theory and provided some
applications where it has been successfully applied to modeling origin of life
processes. Up to now, most research investigating the network structure of biochem-
ical and chemical networks has focused purely on their graphical properties. To
understand the physical and chemical principles underlying the origins of life, closer
contact must be made with understanding—in terms of physics and chemistry—why
particular network architectures are selected by life (Walker 2017). One approach is
to identify universal structural properties of living networks. The “scale-free” prop-
erty is one such candidate property. But, as we have discussed, fitting degree
distributions is only one way to gain insights into the structure of a network and is
challenging to interpret because of ambiguities in identifying the correct fit for a
given distribution. Nonetheless, Jeong et al.’s work demonstrating a universal
network structure for metabolism across all three domains of life does hint there
exist organizational properties of biochemistry common to all life on Earth. Just as
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astrobiologists discuss the “universal” nature of biochemical components—e.g., all
known life is composed of DNA, RNA, proteins, etc.—in informing models for
origins of life, we must also consider the “universal” nature of biochemical organi-
zation, e.g., the network structure of biochemical reactions.

10.4.1 Universal Properties of Biochemical Networks

One major hurdle for making claims about universality is the common ancestry of all
life on Earth. When we talk about universal properties of life, we mostly mean
universal properties of life on Earth, and not necessarily properties truly universal to
life, characteristic of any life in our universe. Such principles, if they exist, would
form the foundation of a new research field in universal biology (Sterelny 2015;
Goldenfeld et al. 2017). Discovery of alien life would obviously enable us to identify
such properties, if they exist. But, in the absence of discovering alien life, is there any
way we might confidently make claims of universality? This is a question the origins
of life field is primed to address. We must understand life and its universal properties
in order to definitively say how such systems can arise in the first place. One
advantage of network thinking is we need not think of life as a level-specific
phenomenon in the same way we must if we focus on chemistry alone as the defining
feature of life. We are accustomed to thinking of life as a chemical phenomenon, i.e.,
defined by the “right” chemical building blocks. But, shifting our thinking to
organizational properties of networks, and their informational properties, allows
studying recurring properties of life across different scales of organization. If
common patterns are found in how living matter organizes across scales within the
biosphere, it increases our confidence those patterns of derivative of universal laws,
rather than shared common ancestry.

We recently analyzed the structure of biochemical networks across multiple
levels of organization in the biosphere ranging from the chemical reaction networks
within cells, to ecosystems, to the biosphere as a whole (Kim et al. 2018). Biochem-
ical reaction networks were constructed using annotated genomic data from 21,637
bacteria taxa, 845 archaea taxa, 77 eukaryotic taxa, and 5587 metagenomes, using
methods developed by Jeong et al. (2000). A biosphere-level network was
constructed from all enzymatically catalyzed reactions cataloged in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database, which is the network
shown in Fig. 10.1. Analyzing the topological structure of these networks as a
function of network size (number of compounds) and level or organization reveals
universal structural properties across all biochemical networks on Earth. These are
described by universal scaling laws; scaling behavior is shown in Fig. 10.9. Scaling
laws are often cited as a candidate for universal biology as they unify trends across
different biological organisms and scales of organization (Gisiger 2001; West
1999a). Familiar examples of scaling behavior from physics include critical phe-
nomena near phase transitions, where physical properties such as heat capacity,
correlation length, and susceptibility all follow power-law behavior. The scaling of
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network structure across levels of organization is different than the power-law
relationship for degree distribution of scale-free networks described in the previous
section because it applies across networks and not just within networks of individual
organisms.

Randomly sampling reactions from known biochemistry to construct networks of
similar size to organismal and ecosystem-level biochemical networks does not
reproduce the scaling observed for living networks (Kim et al. 2018). This suggests
it is the particular manner in which reactions are organized in living matter, and not
the compounds or set of reactions alone, which yield the distinctive properties of
living systems. Network growth models, such as preferential attachment, can repro-
duce some aspects of the architecture of life, but are not physically or chemically
motivated and do not explain the constraints given rise to an observed network
architecture. Scaling relations, due to their ability to “predict” the values of system
parameters based on other measured quantities, represent one of the closest
approaches so far to a predictive theoretical biology, akin to theoretical physics.
Using the observation that cells and organisms are constrained in their growth by
resource distribution networks, predictive models can be generated that accurately
provide values for the scaling exponents observed in a number of diverse biological
systems (West 1999b). Similar predictive models should be generated for biochem-
ical network scaling (a work in progress) and would provide insights into universal
constraints on biochemical architecture, which likely played a role in shaping the
earliest networks in the transition from nonlife to life.

10.4.2 Information and Controllability

One of the most widely discussed, distinctive characteristics of life is its “informa-
tional” properties (Walker and Davies 2013; Yockey 2005; Kuppers 1990). The
study of biology is replete with informational analogies, such as coding, signaling,
sensing, interpretation, etc. As such, information theory is increasingly being utilized
to characterize living systems across all scales (Davies and Walker 2016). An open
question is how useful the concept of information is for origin of life research. A first
step is to identify in what sense information could distinguish living networks from
nonliving ones. The static network picture discussed throughout much of this chapter
is not readily amenable to analysis from an informational perspective as many
measures from information theory rely on knowledge of the dynamic properties of
a system. One class of models for biological networks where information theory is
readily applied is so-called random Boolean network (RBN) models (Wang et al.
2012), which are most commonly used to model gene regulatory networks where
genes can be represented in one of two states “1” (activated) or “0” (inhibited).
While this may seem an abstract representation, such models have been successful in
systems biology and are widely applied. They may also have some utility in prebiotic
evolution as peptide networks have been shown to capable to execute simple
Boolean logic (Ashkenasy and Ghadiri 2004). In a recent study by one of us, it
was shown Boolean models for biological gene regulatory networks (GRN) do in
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fact display different patterns in how information is processed when compared to
random networks with similar topological properties, e.g., random networks with the
same degree distribution (Kim et al. 2015; Walker et al. 2016). This suggests at least
some of life’s biochemical networks might be optimized for information processing,
and these optimization properties may go above and beyond the topological structure
of the network alone for networks encoding function.

A relevant question for origins is why biology is optimized in this manner. In the
case of the GRN models, the distinctive informational properties are associated with
their controllability. The models under study were the GRNs describing the state of
genes responsible for regulating the cell cycle in the fission yeast
Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae.
The Boolean models correctly reproduce the sequence of gene expression patterns
observed in dividing fission and budding yeast, respectively. Regulating a small
subset of nodes, called the control kernel, drives both networks toward their resting
phenotype. That is, by regulating just a few nodes, one can control the function of the
entire network. Intriguingly, these nodes also dominate the distinctive informational
properties of these networks, suggesting a relationship between information
processing and controllability in the biological networks, which is not generally
present in random graphs.

In Nghe et al., information control was recognized as among the six key network
parameters we must understand better in order to build an evolutionary theory of
catalytic networks (Nghe et al. 2015). Most origins of life research so far has focused
on the role of genes in information storage and propagation and not their role in
information processing or as regulators of biological function in a dynamic system.
However, control is essential to biological function, for example, in maintaining
homeostasis. As with the toy model of the cell cycle networks, there likely is a
connection between the function of early genes as control elements in early cells and
their role in information processing and storage. Hints of this are apparent in models
exploring these concepts. For example, Kaneko and colleagues discovered a key role
for “minority molecules” in regulating reproduction of catalytic networks in a
protocell model (Kamimura and Kaneko 2010). The minority molecules are kinet-
ically slower components in an autocatalytic network and were suggested to play the
role of primitive genes, regulating reproduction of the entire system. More models
and more empirical work studying how networks might evolve control nodes are
necessary to understand how very primitive biochemical networks first evolved
regulatory feedback and may provide insights into the early evolution of genetic
function.

10.4.3 A Network Theory of Planetary Biospheres

In the previous sections, we have talked about two distinct layers of biochemical
networks—metabolic networks describing all of the catalyzed (programmed) chem-
ical reactions transforming molecular compounds within cells and gene regulatory
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networks which regulate cellular function (e.g., do the programming). While we
often study these systems separately, in reality, they are tightly coupled. The
biochemical network organization of the biosphere emerges due to the structure of
reactions which are enzymatically catalyzed—that is, the subset of the Earth’s
chemistry life controls. That control is itself implemented through gene regulatory
networks, which represent a “higher level” in life’s hierarchical organization. As we
go up in the hierarchy of structure and function in biological systems, we see similar
motifs of interacting networks, where some biological networks regulate the func-
tion of others. The phenomena of life itself may be thought of as a hierarchy of
interacting networks. One critical question for origin of life research is to uncover
how such a hierarchy emerges in the first place.

In order to answer this question, we must consider the coupling of Earth’s
biological networks to their geochemical and atmospheric context. At some level,
terrestrial biochemistry should be continuous with terrestrial geochemistry, implying
geochemistry should represent the bottom level of life’s hierarchy (Shock and Boyd
2015). In a similar vein, the biosphere’s coupling to atmospheric chemistry has driven
the most dramatic planetary scale changes in Earth’s history (Sessions et al. 2009). If
this strong coupling between life and its planetary environment is considered funda-
mental to living processes, the emergence of feedbacks between “life” and environ-
ment must be an important process even prior to life’s emergence, perhaps even
driving it (Mathis et al. 2017a). To develop quantitative frameworks for understand-
ing the emergence of life as a planetary process, a network theory of biogeochemistry
is necessary. One possible mathematical framework for formalizing such a theory is
multiplex networks. In a multiplex (or multilayer) network, nodes are connected by
different types of edges (to be contrasted with bipartite networks where different
types of nodes are connected by edges) (Boccaletti et al. 2014). Multiplex networks
are often visualized as several networks layered on top of one another. A multiplex
network of planetary chemistry would involve several scales of organization,
connecting a network of geochemical reactions (at the “bottom”) to metabolic
processes, to atmospheric chemistry (at the “top”). While biochemical networks are
well characterized, geochemical networks and atmospheric networks remain rela-
tively unexplored. Some work on the network structure of planetary atmospheres has
revealed topological differences between Earth’s atmospheric reaction network and
that of other planetary bodies (with atmospheres) in our solar system, such as Mars,
Venus, and Titan (Sole and Munteanu 2004; Gleiss et al. 2001); suggestive network
theory can distinguish properties of living worlds from those of nonliving worlds.
Developing a network theory of planetary (biogeo)chemistry would also allow
astrobiologists to incorporate information about exoplanets, such as atmospheric
spectra and planetary composition, into a unified framework that will be essential
for characterizing alien biosignatures.
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10.5 Conclusions

In the last century, prebiotic chemists have focused on identifying the molecular
aspects of biochemistry which may have played prominent roles in the origin of life
on Earth. However, while there is much debate about whether or not all life will
share a common chemistry, it is less debated that life will display some form of
organization (Schrodinger 1944). The organizational principles of life likely tran-
scend levels of organization within the biosphere: we see evidence of the role of
information in organizing living matter within cells, in intracellular signaling in
living tissues, in ecosystems, and in societies. Adopting a view whereby it is the
structure of interactions and transformations which defines the living state, and how
that is mediated by information, life becomes a property not just of the chemistry
within our cells but of the organization of that chemistry. Network science provides a
natural quantitative framework to study this. By shifting to a system-level perspec-
tive, and embracing the tools of provided by network science, prebiotic chemistry
will be able to not only understand the synthesis of molecules relevant to life on the
primitive Earth but, perhaps more importantly, how those molecules collectively
drove the emergence of the first living systems.
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